

$24^{\text {th }}$ BALKAN MATHEMATICAL OLYMPIAD

Rhodes, Hellas, 28 April 2007

Problem 1.

Let $A B C D$ be a convex quadrilateral with $A B=B C=C D, A C \neq B D$ and let E be the intersection point of its diagonals. Prove that $A E=D E$ if and only if $\angle B A D+\angle A D C=120^{\circ}$.

Problem 2.

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(f(x)+y)=f(f(x)-y)+4 f(x) y, \text { for any } x, y \in \mathbb{R} .
$$

Problem 3.

Find all positive integers n such that there is a permutation σ of the set $\{1,2, \ldots, \mathrm{n}\}$ for which $\sqrt{\sigma(1)+\sqrt{\sigma(2)+\sqrt{\cdots+\sqrt{\sigma(n)}}}}$ is a rational number.
Note: A permutation of the set $\{1,2, \ldots, n\}$ is a one-to-one function of this set to itself.

Problem 4.

For a given positive integer $n>2$, let C_{1}, C_{2}, C_{3} be the boundaries of three convex n-gons in the plane such that $C_{1} \cap C_{2}, C_{2} \cap C_{3}, C_{3} \cap C_{1}$ are finite. Find the maximum number of points of the set $C_{1} \cap C_{2} \cap C_{3}$.

Time allowed 4 hours and 30 minutes

Each problem is worth 10 points.

