

24th BALKAN MATHEMATICAL OLYMPIAD

Rhodes, Hellas, 28 April 2007

Problem 1.

Let *ABCD* be a convex quadrilateral with AB = BC = CD, $AC \neq BD$ and let *E* be the intersection point of its diagonals. Prove that AE = DE if and only if $\angle BAD + \angle ADC = 120^\circ$.

Problem 2.

Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that

 $f(f(x)+y) = f(f(x)-y) + 4f(x)y, \text{ for any } x, y \in \mathbb{R}.$

Problem 3.

Find all positive integers n such that there is a permutation σ of the set $\{1,2,...,n\}$ for which $\sqrt{\sigma(1) + \sqrt{\sigma(2) + \sqrt{\dots + \sqrt{\sigma(n)}}}}$ is a rational number. *Note:* A permutation of the set $\{1,2,...,n\}$ is a one-to-one function of this set to itself.

Problem 4.

For a given positive integer n > 2, let C_1 , C_2 , C_3 be the boundaries of three convex n-gons in the plane such that $C_1 \cap C_2$, $C_2 \cap C_3$, $C_3 \cap C_1$ are finite. Find the maximum number of points of the set $C_1 \cap C_2 \cap C_3$.

Time allowed 4 hours and 30 minutes Each problem is worth 10 points.