

Day 1

1 Positive integers $a<b$ are given. Prove that among every b consecutive positive integers there are two numbers whose product is divisible by $a b$.
2. Two polynomials $f(x)=a_{100} x^{100}+a_{99} x^{99}+\cdots+a_{1} x+a_{0}$ and $g(x)=b_{100} x^{100}+b_{99} x^{99}+$ $\cdots+b_{1} x+b_{0}$ of degree 100 differ from each other by a permutation of coefficients. It is known that $a_{i} \neq b_{i}$ for $i=0,1,2, \ldots, 100$. Is it possible that $f(x) \geq g(x)$ for all real x ?

3] $A A_{1}, B B_{1}, C C_{1}$ are altitudes of an acute triangle $A B C$. A circle passing through A_{1} and B_{1} touches the arc $A B$ of its circumcircle at C_{2}. The points A_{2}, B_{2} are defined similarly. Prove that the lines $A A_{2}, B B_{2}, C C_{2}$ are concurrent.

4 Determine maximum real k such that there exist a set X and its subsets $Y_{1}, Y_{2}, \ldots, Y_{31}$ satisfying the following conditions: (1) for every two elements of X there is an index i such that Y_{i} contains neither of these elements;
(2) if any non-negative numbers α_{i} are assigned to the subsets Y_{i} and $\alpha_{1}+\cdots+\alpha_{31}=1$ then there is an element $x \in X$ such that the sum of α_{i} corresponding to all the subsets Y_{i} that contain x is at least k.

Day 2

1 What minimum number of colours is sufficient to colour all positive real numbers so that every two numbers whose ratio is 4 or 8 have different colours?

2 Point D is chosen on the side $A B$ of triangle $A B C$. Point L inside the triangle $A B C$ is such that $B D=L D$ and $\angle L A B=\angle L C A=\angle D C B$. It is known that $\angle A L D+\angle A B C=180^{\circ}$. Prove that $\angle B L C=90^{\circ}$.

3 Several knights are arranged on an infinite chessboard. No square is attacked by more than one knight (in particular, a square occupied by a knight can be attacked by one knight but not by two). Sasha outlined a 14×16 rectangle. What maximum number of knights can this rectangle contain?

4 Prove that there exists a positive c such that for every positive integer N among any N positive integers not exceeding $2 N$ there are two numbers whose greatest common divisor is greater than $c N$.

